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is no solution involving fewer particles than the double-
octet solution of unitary symmetry. The 5, 3 (SU2) 
scheme, discussed in Sec. IVC, may lead to a solution 
of simplicity comparable to that of the double-octet 
scheme. 

The third result is that deviations from degeneracy 
of the Okubo type are favored in the double-octet 
scheme. 

The model is incomplete in several aspects. The 
various assumptions concerning the partial waves and 
configurations that are important have not been 
checked with detailed, dispersion-theoretic calculations. 
The criterion used for nondegenerate solutions is crude; 
its chief virtue is its simple applicability. Furthermore, 
no reason has been given why the particle multiplets 
should be nondegenerate. There is no compelling 

I. INTRODUCTION 

IN a preceding paper1 it has been argued that the true, 
physical, energy-momentum tensor associated with 

a spin-J wave is Tetrode's asymmetrical tensor 

T i3'= - \ch$[d l~]yj\p+ieA rfyty (1) 

so that, according to the well-known2 formula 

0*7= Ti''-T>'i=-dk*
i''k=icei>'kl(dl(rk-dk<ri), (2) 

where a denotes Dirac's spin density 

<ri3'k= iceij'kl(Ti= ichrfa *'*$, (3) 

the kinematical current lines and the energy-momentum 

1 O. Costa de Beauregard, Phys. Rev. 129, 466 (1963); all the 
notations of this paper are retained here, except for ®*' which is 
taken in a different sense. 

2 H . Tetrode, Z. Physik 48, 52 (1928). 

reason, other than simplicity, for the neglect of the 
baryon-antibaryon states. In fact, it is hoped that in 
more accurate bootstrap models the baryons will be 
necessary. 

Thus, even if our basic assumption is right, i.e., that 
nature chooses the simplest self-consistent set of 
particles, the true consistency criteria may be quite 
different from those assumed here. The primary 
purpose of this paper is to demonstrate the falseness 
of the common assumption that if simple representations 
of one Lie group satisfy a particular bootstrap model, 
simple representations of any other Lie group must 
satisfy a similar model. The consistency criteria of 
Sees. I l l , IV, and V are examples of plausible criteria 
that distinguish between different group-representation 
schemes. 

lines may, under appropriate circumstances, be non-
collinear. (Latin indexes run from 1 to 4; x4=ict; 
h—lnfi, denotes Plank's constant, ei3'kl Levi-Civita's 
indicator, yl the von Neumann matrices, 4f=^yi, [d*] 
the Gordon current operator, e the electron charge, A* 
the electromagnetic potential; yi3--- = yiy3' • • if all in­
dexes are different, 0 otherwise.) 

The final conclusion of this preceding paper1 was 
incorrect, as we shall explain later. However, the main 
point, which the above paragraph recalls, remains true; 
the present paper intends to show that by using as a 
test material the probability fluid associated with 
moving spin-J particles rather than a solid, the recoil 
effect corresponding to the "transverse momentum"1 

should appear. 
The test material, which is a beam of spin-| particles, 

has the three following fundamental properties: (a) a 

P H Y S I C A L R E V I E W V O L U M E 1 3 4 , N U M B E R 2 B 27 A P R I L 1 9 6 4 

Translational Inertial Spin Effect with Moving Particles 

O. COSTA DE BEAUREGARD 

Institut Henri Poincare', Paris, France 
(Received 8 July 1963; revised manuscript received 22 November 1963) 

Although the final conclusion of a preceding paper was incorrect, as we shall explain, the main point 
remains, and should entail the existence of sui generis recoil effects associated with nonzero values of curl or 
(or is the spin density). These should be observed by testing, not with solids as was previously proposed, but 
with the probability fluids associated with moving particles; this more refined type of experiment should 
be able to select, among the set of integrally equivalent energy-momentum tensors, the one describing 
locally the true or physical energy-momentum flux. In this paper it is shown, by an explicit calculation, that 
cylindrical type solutions of the extreme relativistic Dirac equation exist with no z dependence of the wave 
function (and thus no kz component of the momentum) but still with a z component of the Dirac probability 
current; as this conclusion is reached with a t dependence of the wave function of strictly the form 
exp(—iWt/fi), there is no question of having to perform a Foldy-Wouthuysen transformation to extract the 
positive energy contribution (or equivalently, to use the Newton-Wigner position operator). The "transverse 
inertial spin effect" we predict is locally described by the flux of the Dirac current per time dt and surface 
ds, and corresponds to the local transition probabilities between the dynamical state of the beam and a 
pointlike localization of the incident particles. 
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velocity equal to or nearly equal to c, so that there are 
only two (longitudinal) spin, or helicity, states; (b) a 
pure energy state, with eigenvalue W, so that there is no 
question of having to perform a Foldy-Wouthuysen 
transformation in order to extract the positive-energy 
contribution; (c) no z dependence of the wave function 
^, so that there is certainly no momentum component in 
the (fixed) z direction. 

We will prove by an explicit calculation that it is 
possible to (d) bend the beam around the z direction, 
that is, parallel to the xy plane as far as momentum (not 
necessarily velocity!) is concerned, in such a way that a 
pure (longitudinal) spin state is conserved; and (e) im­
pose a radial distribution of the \p wave amplitude such 
that the field of current and spin vectors (which are 
collinear) has a nonzero z component. 

Finally, we will show that (f) these joint properties 
correspond precisely to the existence of a "transverse 
momentum" associated with a nonzero value of curler, 
according to Tetrode's formula (2). The following re­
marks will be useful. 

Let us define the " t rue" or "physical," the "pseudo-," 
and the "transverse" energy-momentum associated 
with an infinitesimal volume3 icei3'kldui= [dxidx3'dxk2 as, 
respectively, 

dP^T^duj, (4) 

dL^Tf'duj, (5) 

dT^QVduj, (6) 

T and 0 being defined by (1) and (2); we will consider 
successively the cases where the 4-vector duj is timelike 
and is spacelike. 

A timelike du3- represents a volume element in the 
ordinary sense, and no generality will be lost in sup­
posing that du± is the only nonzero component. Then, 
inserting in (4) and (5) the Tetrode expression (1), we 
obtain a " t rue" dPi directed by the energy momentum 
operator id\ and a "pseudo" energy-momentum d& 
collinear with the Dirac current i\pyl\f/ [as d4 will be the 
only differential operator present in (5) and the t de­
pendence of \j/ is, according to postulate (b), solely 
through a common factor exp(—iWt/Ky\. Thus, in this 
case, dU may well be called the "longitudinal" energy-
momentum. In view of the following, the prerelativistic 
form of formula (2) 

T = - f f f curl<rtfc*= f fvXds (7) 

should also be noted. 
In the case where du3- is spacelike, no generality will 

be lost in supposing that the du* component is zero; the 
three other ones may be written as dua= dsadt(a= 1,2,3), 

3 To avoid confusion with the spin density, Schwinger's notation 
da-i for the volume element is discarded. 

so that formulas (4)-(6) now represent energy-mo­
mentum fluxes per time element through a surface 
element. In view of the following, we consider the case 
of a surface element orthogonal to the z axis; inserting 
the Tetrode expression (1) in (5) and remembering 
postulate (c) (no z dependence of the \j/ wave), we find 
in this case a nil "pseudo" energy-momentum flux. But 
the "transverse," and thus the "total ," energy-mo­
mentum flux will not be nonzero in general; using an 
abridged, but grammatically incorrect expression, we 
shall call c2dT4 and c2dT*/dt the "transverse energy" and 
"transverse power" fluxes; the formula 

cbt—c2 I J curler-ds=c2 (p a-d\, (8) 

(where ut denotes the "transverse power") follows 
directly from Tetrode's formula (2). 

We will show in Sec. I l l that the noncollinearity of 
the particles velocity and momentum found in Sec. I I 
by a direct calculation is completely justifiable in terms 
of either the spacelike or the timelike integral considera­
tions just stressed. 

The problem of extending these conclusions to higher 
spin cases is an interesting one, but, as a few more 
difficult questions would be raised, we shall postpone 
consideration. 

II. SPIN-V2 PARTICLES IN A CIRCULAR ACCELERATOR 
(EXTREME RELATIVISTIC LIMIT) 

We shall proceed to integrate the Dirac equations 
with a time- and ^-independent, cylindrically symmetric, 
potential of the form 

i4i=—a(r)s in0, A2=a(r) cos0, 4 8 = 0 , A4=0, (9) 

generating the magnetic field 

H!=0, # 2 = 0 , Hz=Hz=a(r)/r+a'(r); (10) 

we use cylindrical coordinates r, 6, z(r^0). 
In the extreme relativistic limit [postulate (a) above^ 

the mass terms are negligible, and the four Dirac 
equations reduce to two pairs of equations implying the 
2X2 Pauli matrices such that 

(TiPv^—frvcr^ivp, <V*=1, /*, J>, p = l , 2, 3 . (11) 

According to postulates (b) and (c), we will seek solu­
tions of the form 

Mr&t) = f(r) exp£(i/fi)(Cd-Wt)3A-i(d)<po, (12) 

with C and W constant, and the (common) function 
f(r) real; <po is a constant 2-spinor, and A-1(0) a 2X2 
matrix which will be specified later; W is clearly an 
energy eigenvalue, and C (due to the S dependence 
through A-1) is the mean value of the angular mo­
mentum around the z axis. 
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According to (12) and (13), 

b e a r l d e 1 
[-i-Ax—cos6 sin# \-i-a(r) , 

dx fi dr Lr dd fi J 

d 

dy 

(13) 
e d r l d e 1 

+i-Ay=smd—\-cosd\ \-i-a(r) 
ft dr Lr 66 fi J 

the four Dirac equations may be written 

df rl a 
(ai cos0+(72 sin#)—+ (cr2 cos#—cri sin0) 

dr rdd 

i / C\-\ i W 
+-lea(r)+~) \f~e1 f\A^(d)cp0=0', (14) 

^ \ r / A fi c ft\ 

it is well known that the double sign e i = ± l allows 
jointly for the possibility of performing space inversions 
and describing antiparticles.4 

Following postulate (d), we will seek solutions with 
the same cylindrical symmetry as the external potential 
(9); that is, we will identify A(0) with the matrix 

such that 
A^(fi) = cos|(9±i(73 sin§0, 

A~1criA= ci COS0+G-2 sin0, 

A_1o-2A=(72 cosd—ai sin#. 

(15) 

(16) 

A(d/d0)A_1= — |̂ o"3 is easily calculated, so that (14) can 
be rewritten as 

We now specify the representation of the a's ac­
cording to postulates (d), (e), and (f). When 0=0 , 
A = A _ 1 = 1 ; we want <po to be an eigenfunction of the 
spin projection on a unitary vector Ui=0, ^2=cosce, 
Uz— since; thus, we choose 

0 " 1 = CT01 y 0 "2= O"02 COSCe+(703 s ince , 

(Tz— o"03 cosa—o"02 since, (18) 

with essentially ce= const., the c's being the standard set 

rt) 1\ / l 0 \ / 0 i> 
(19) ^ 0 1 = d o)* "2=(o -i)' " , = C o); 

and we take <po as one of the two eigenfunctions 

/u\ /ON 
<p(T •0' ~-Q- (2o) 

with the normalization condition 

u*u— 1. (21) 
4 See, for instance, J. Hamilton, The Theory of Elementary Par­

ticles (Clarendon Press, Oxford, England, 1959), pp. 138, 139. 

With solutions of the type (12), (18)-(21), the spin 
component tangent to the H helices of common slope a 
obeying the equations r= const, z=ar(6—do), remains 
constant and equal to ± | & . In addition, the field 
trajectories of the current and spin-density vectors 
(which are collinear) are the H helices, as seen through 
(18), (19), and (20). 

Finally we show that the integration of Eqs. (17) may 
be achieved along these lines. Inserting (18), (19), and 
(20) into (17) yields the two equations 

ea(r)+C/r= eie$V /c cosce 
and 

• \ -

L2r 
dr L2r 

since/ C\~] 
•ea (ea(r)+-) /=0; 

ft \ r / J 

(22) 

(23) 

the double sign €2= ± 1 is the same as in (20). Therefore, 
according to (22), the radial distribution of the vector 
potential (9) is not arbitrary, but depends on the a 
priori choice of the constants W, C, and ce (energy and 
mean angular momentum of the particles, slope of their 
trajectories). The C/r term is merely a gauge term, 
ensuring that the kinetic energy momentum is a null 
4-vector, as it has to be. 

Inserting (22) in (23) yields 

df r l Wtsaia 

- + —€1 
dr L2r ch -

the integral of which is (B real) 

/ = 0 , 

B /Wei tance N 
f(r) = —- expf r 

y/r ch 

(24) 

(25) 

Thus, as was expected, we find a definite relation be­
tween the (common) slope a of the helical-current (and 
spin) lines, and the radial distribution of the waves 
amplitude f(r); let us recall that, as the \p wave has been 
taken as ^-independent, there is no momentum com­
ponent along the z axis. 

There are essentially two classes of solutions ac­
cording to the sign of Wei tana (the intermediate case 
ce= 0 being the one where no inertial spin effect exists, as 
the current lines are circles of axis z). Let us recall that 
W is taken as greater or less than 0 according as one 
deals with particles or antiparticles,4 and restrict our­
selves for brevity to the particle case: W>0. 

We consider first the class of solutions ei tance < 0 , 
which are square integrable in the sense that 

/•+00 

27T/ f(r)rdr=-
J 0 

2-KCH 

Wei tance 
(26) 

is finite. Then, according to the well known corre­
spondence between energy and spin states in the two-
component Fermion theory,4 we see that the positive-
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(negative-) helicity states are deviated downwards 
(upwards). 

The class of solutions ei t a n a > 0 is not square inte­
g r a t e , as it diverges in the upper limit r —» + Q° ; 
consequently, when it is used, some kind of a cutoff 
should be introduced. These solutions are of physical 
interest since, going from +00 to + °° through a mini­
mum, they are able to describe, in the minimum region, 
the behavior of a homogeneous thin beam injected 
tangentially in the field (10) at the right distance r. 
This can be worked out by simply solving (23) at the 
point df/dr— 0, which yields 

ataxia^ ch/2rW. (27) 

Thus, in this case, the positive- (negative-) helicity 
states will be deviated upwards (downwards). 

III. CONNECTION BETWEEN THE PRECEDING 
FORMULAS AND THE GENERAL ONES 

IN THE INTRODUCTION 

We will show now, by two different methods, that the 
connection existing between the transverse momentum 
of the particles and the nonzero value of curio- is pre­
cisely the one described in the introduction. 

First Method 

The transverse momentum T=JlfvXds contained 
inside a ring of radius r, thickness dr, and height dz is, 
according to formulas (18)-(25), parallel to the z axis 
with the value 

dT=irh cosad (f2r)dz = 2wc~lWei sinaf2rdrdz; (28) 

inside the same volume, the probability of the presence 
of the Fermion (or, in a superquantized version, the 
mean number of Fermions) is 

dn = lirprdrdz, (29) 

so that the transverse momentum per Fermion is 

T= dT/dn=c-1e1W sino:. (30) 
But, 

L^eJV/c (31) 

is the classical, longitudinal, momentum, so that finally5 

T/L=sina. (32) 
Incidentally, in the class of solutions JFei t ana<0 , 

formulas (28) and (29) are integrable over the whole 
plane z= const., yielding, according to formula (25), 

dn/dz= —irB2cfi/Wei tana, (33) 

which is a normalization equation for the constant B, 
and 

dT/dz=irB2h. (34) 
5 The presence of sino; rather than tana is due to the fact that 

the integration all along a circular path has cut off the tangential 
projection of the particle's transverse momentum. 

B E A U R E G A R D 

The non-nullity of the latter expression, which is es­
sentially due to the behavior of the wave function in the 
limit r— 0, shows that, in the problem under discussion, 
the various tensors aTi3'+fiTJ'% a+(3= 1, deduced from 
Tetrode's tensor (1) are not integrally equivalent; and 
that the correct one is unambiguously Tij\ which yields, 
by integration over the whole plane z— const., dP/dz= 0. 
In particular, use of the classical symmetrized tensor 
(a=/3=-|) would yield the wrong result dP/dz=^dT/dz 
9*0. 

Second Method 

According to formulas (8), (18)-(21), and (24), the 
"transverse power"4 dut—^drf'wdl through the ring 
comprised, in any plane z= const., between two circles 
of radii r and r-\-dr is 

dut= c2€2 cosairfid(f2r) = 27reie2 smacWf2rdr. (35) 

This, according to what was said at the end of the 
introduction, must be precisely equal to the " t rue" or 
"physical" power running through the ring, i.e., the 
power transported by the deflected particles; this is €iW 
times the particle flux through the ring, lircpvJvzipQrdr, 
or, according to formulas (18) to (21), 

dco = 27reie2 sinacWf2rdr. (36) 

By comparing (35) and (36) one verifies that dcbt
=dcb, 

and thus proves that the helical shape of the current 
lines, together with the absence of any momentum 
component along the z axis, is a direct consequence of 
the non-nullity of curia, as explained in the introduction. 

IV. DISCUSSION AND CONCLUSIONS 

Physically speaking, the transverse dimensions of the 
accelerator are finite and this is obtained by a suitable 
choice of the external field. We are primarily interested 
in the effect of the radial limitation of the beam. 

Calculating the integral (8) or (35) over a ring, normal 
to the z axis, limited by two circles outside the beam, one 
arbitrarily small and one arbitrarily large, will yield a 
zero value; this means that, globally, the transverse (z) 
component of the Dirac current induced by the existence 
of (nonzero) curia inside the beam, and that induced by 
the existence of a (strong) curler in the inner and outer 
sides of the beam, will compensate each other. In other 
words, one may conveniently distinguish an "interior" 
region of the beam, where the transverse deviation 
described in Sees. I I and I I I will appear under appro­
priate radial distributions of the directing field and of 
the wave amplitude; and two sides of the beam, where 
transverse deviations (of opposite sign) will appear, 
which globally compensate the preceding one. Thus, if 
the experiment is conducted in such a way that only the 
total integral deviation is measured, no effect will be 
observed; and this mutatis mutandis is why a positive 
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effect cannot be observed in the experiment described in 
our previous paper1 (contrary to what we concluded 
there). 

But, experimenting with a fluid as is described above, 
a positive effect should be observable, for it is then 
possible to test independently the probabilities of im­
pacts of particles along the various stream lines of the 
Dirac current; that is, transitions are studied between 
the dynamical state of the beam and states corre­
sponding to point locations of particles. This type of 
experiment, more refined than the one implying a global 
integration, should be able to distinguish, from among 
the various integrally equivalent6 energy-momentum 
tensors, the one describing locally the true or physical 
energy-momentum flux. 

The natural way to test experimentally the " trans­
verse inertial spin effect" thus predicted would be to 
inject tangentially a monokinetic homogeneous beam of 
particles of energy W at the distance r defined by 
formula (27); thus, the two helicity states should be 
deviated in opposite z directions, as expressed by for­
mula (27). 

Of course, if one intended to use this procedure as a 
means for separating the two spin states of the particles, 
the callback in the z direction by the directing field 
should, at least, be partially removed; the corresponding 
difficult stability problems one would have to deal with 
are beyond the scope of the present study. 

6 The reason why the various energy-momentum tensors are 
integrally equivalent in the present physical circumstances and 
were not in the more schematic picture of Sees. I I and III is of 
course due to the behavior of the 4> wave in the lower (eventually, 
upper) limits of the radius r. 

Another important technical difficulty which we do 
not intend to discuss is associated with the imperfect 
vacuum inside the accelerator. Any Fermion colliding 
with the electron shell of an atom present along the 
track will be lost for testing the effect; the collapse of the 
wave packet associated with this position determination 
of the incident fermion will entail a corresponding 
narrowing of the subsequent probability current (as in 
the Wilson-chamber experiment); thus integrations all 
over the beam will be implied and, as explained above, 
a zero effect will follow as far as the subsequent path of 
these particles is considered. Finally, the effect we de­
scribe should be fully observable only on particles which 
undergo their first collision in the receiver. 

Note added in proof. An explicit calculation has now 
been given in the case of a radial limitation of the 
beam7; the contents of the present paper are thus com­
pletely confirmed. 

The effect has also been calculated in the case of a 
vertical limitation of the beam, obtained by a Fourier 
superposition of solutions analogous to those of the 
present paper (but with a phase exponent CQ+kz— Wt).8 

The conclusion is that if the k distribution of amplitudes 
is a Gaussian one, centered on the value k = 0 of the z-
momentum component, the transformed Gaussian z dis­
tribution is centered on a value Z such that eiZ/sina 
— rd/cosa=cL 

7 Compt. Rend. 257, 3327 (1963); the notations were denned in 
Compt. Rend. 256, 4608 (1963). 

8 Compt. Rend. 258, 1745 (1964). Formula (42) of that paper is 
obviously erroneous; it should be written with an m, and thus 
and/ , essentially ^-independent; this is a necessary condition for 
the validity of the conclusion that has been drawn. 


